Abstract
Stress increases DNA methylation, primarily a suppressive epigenetic mechanism catalyzed by DNA methyltransferases (DNMT), and decreases the expression of genes involved in neuronal plasticity and mood regulation. Despite chronic antidepressant treatment decreases stress-induced DNA methylation, it is not known whether inhibition of DNMT would convey rapid antidepressant-like effects. This work tested such a hypothesis and evaluated whether a behavioral effect induced by DNMT inhibitors (DNMTi) corresponds with changes in DNA methylation and transcript levels in genes consistently associated with the neurobiology of depression and synaptic plasticity (BDNF, TrkB, 5-HT1A, NMDA, and AMPA). Male Wistar rats received intraperitoneal (i.p.) injection of two pharmacologically different DNMTi (5-AzaD 0.2 and 0.6mg/kg or RG108 0.6mg/kg) or vehicle (1ml/kg), 1h or 7days before the learned helplessness test (LH). DNA methylation in target genes and the correspondent transcript levels were measured in the hippocampus (HPC) and prefrontal cortex (PFC) using meDIP-qPCR. In parallel separate groups, the antidepressant-like effect of 5-AzaD and RG108 was investigated in the forced swimming test (FST). The involvement of cortical BDNF-TrkB-mTOR pathways was assessed by intra-ventral medial PFC (vmPFC) injections of rapamycin (mTOR inhibitor), K252a (TrkB receptor antagonist), or vehicle (0.2μl/side). We found that both 5-AzaD and RG108 acutely and 7days before the test decreased escape failures in the LH. LH stress increased DNA methylation and decreased transcript levels of BDNF IV and TrkB in the PFC, effects that were not significantly attenuated by RG108 treatment. The systemic administration of 5-AzaD (0.2mg/kg) and RG108 (0.2mg/kg) induced an antidepressant-like effect in FST, which was, however, attenuated by TrkB and mTOR inhibition into the vmPFC. These findings suggest that acute inhibition of stress-induced DNA methylation promotes rapid and sustained antidepressant effects associated with increased BDNF-TrkB-mTOR signaling in the PFC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.