Abstract
Seeking potential electrocatalysts with both large-scale application and robust activity for the oxygen evolution reaction allows for no delay. Herein, a squarate-based metal-organic framework (MOF) ([Co3 (C4 O4 )2 (OH)2 ]⋅3H2 O) is reported for electrocatalytic water oxidation. A facile, green, and low-cost strategy is proposed to introduce defects by not only rationally breaking CoO bonds to form defective coordination environment and electronic reconfiguration, but also systematically modulates defect concentration to optimize electrochemical performance. As a result, the post-treated surface defective MOF derivative (Co-MOF-3h) achieves a current density of 50mA cm-2 at an overpotential of 380mV, owing to larger active surface area, more opened active sites, and favorable conducting channels. Finally, density functional theory calculations have further validated the effect of defective coordination in regard to electronic structure for electrocatalysts. This study delivers inspirations in defect engineering and is in favor of developing high-efficiency electrocatalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.