Abstract

A superfusion system was used to study the effects of excitatory amino acids (EAA) on release of [3H]dopamine ([3H]DA) previously taken up by rat substantia nigra (SN) slices. The EAA tested (20-250 microM), with the exception of quisqualate and kainate, markedly evoked [3H]DA release from nigral slices when Mg2+ ions were omitted from the superfusion medium. The EAA receptor agonists exhibited the following relative potency in stimulating [3H]DA release: L-glutamate (L-Glu) greater than N-methyl-D-aspartate (NMDA) greater than NM(D,L)A greater than D-Glu much greater than quisqualate = kainate. D-2-Amino-5-phosphonovalerate (100-200 microM), an antagonist for NMDA receptors, substantially reduced [3H]DA release evoked by L-Glu or NMDA. In contrast, L-Glu diethyl ester (100-200 microM) produced a lesser blocking effect on [3H]DA release evoked by the EAA. Further experiments showed that the NMDA-mediated release of [3H]DA was totally suppressed by the omission of Ca2+ or by the addition of tetrodotoxin (0.1 microM) to the superfusion medium. In addition, strychnine, an antagonist for glycine (Gly) receptors, significantly decreased NMDA (100 microM)-evoked as well as glycine (100 microM)-evoked release of [3H]DA from nigral slices. The results shown support the idea that activation of NMDA subtype receptors in SN may trigger a Ca2+-dependent release of DA from dendrites of nigro-striatal DA-containing neurons. Furthermore, a transsynaptic mechanism that may partially involve Gly-containing interneurons is proposed to account for some of the events mediating NMDA receptor activation and DA release in SN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call