Abstract

During synchronous action potential (AP) firing of CA1 pyramidal cells, a population spike (PS) is recorded in the extracellular space, the amplitude of which is considered a reliable quantitative index of the population output. Because the AP can be actively conducted and differentially modulated along the soma and dendrites, the extracellular part of the dendritic inward currents variably contributes to the somatic PS by spreading in the volume conductor to adjacent strata. This contribution has been studied by current-source density analysis and intracellular recordings in vivo during repetitive backpropagation that induces their selective fading. Both the PS and the ensemble action currents declined during high-frequency activation, although at different rates and timings. The decline was much stronger in dendrites than in the somatic region. At specific frequencies and for a short number of impulses the decrease of the somatic PS was neither due to fewer firing cells nor to decreased somatic action currents but to the blockade of dendritic action currents. The dendritic contribution to the peak of the somatic antidromic PS was estimated at approximately 30-40% and up to 100% at later times in the positive-going limb. The blockade of AP dendritic invasion was in part due to a decreased transfer of current from the soma that underwent a cumulative increase of conductance and slow depolarization during the train that eventually extended into the axon. The possibility of differential modulation of soma and dendritic action currents during APs should be checked when using the PS as a quantitative parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.