Abstract

In the present work, employing cylindrically (spherically) symmetric field equations of a plasma consisting of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution and stationary ions, we studied the amplitude modulation of electron-acoustic waves. Due to the physical nature of the problem under investigation, the nonlinearity of the field equations is of order (3/2), which causes considerable difficulty in the analysis of modulation problems. To solve this difficulty, we expanded this nonlinear term into the Fourier cosine series of the phase function and obtained the modified cylindrical (spherical) nonlinear Schrödinger (NLS) equation. A consistent analysis for the modulational instability is presented and a criterion between the time parameter τ and the wave number K is established. In addition, motivated with the solitonic solution of modified NLS equation for planar case and utilizing the “weighted residual method,” we proposed a harmonic wave of variable frequency with progressive wave amplitude to the evolution equation. It is found that the modified cylindrical (spherical) NLS equation assumes an envelope type of progressive wave solution in the sense weighted residual. The numerical results reveal that the amplitude of spherical wave is much larger than that of the cylindrical wave and that both amplitudes decrease with increasing time parameter τ. It is further observed that the wave profiles get distorted with progressing time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call