Abstract

We present results from atomic force microscopy (AFM) images indicating various experimental conditions, which alter the morphological characteristics of self-assembled cyanobacterial PS I on hydroxyl-terminated self-assembled alkanethiolate monolayers (SAM/Au) substrates. AFM topographical images of SAM/Au substrates incubated in solutions containing different PS I concentrations solubilized with Triton X-100 as the detergent reveal large columnar aggregates (∼100 nm and hence, much taller than a single PS I trimer) at high PS I concentrations. Depositions from dilute PS I suspensions reveal fewer aggregates and relatively uniform surface topography (∼10 nm). Confocal fluorescence microscopy analysis of fluorescently tagged PS I deposited on to SAM/Au substrates using electric field and gravity driven techniques reveal preliminary indications of directionally aligned PS I attachments, besides corroborating a uniform monolayer formation, for the former deposition method. The complex attachment dynamics of PS I onto SAM substrates are further investigated from the AFM images of PS I/SAM/Au substrates prepared under different experimental conditions using: 1) PS I isolated as monomers and trimers 2) adsorption at elevated temperatures, and 3) different detergents with varying pH values. In each of the cases, the surface topology indicated distinct yet complex morphological and phase characteristics. These observations provide useful insight into the use of experimental parameters to alter the morphological assembly of PS I on to SAM substrates en route to successful fabrication of PS I based biohybrid photoelectrochemical devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call