Abstract
A common neural control mechanism coordinates various types of rhythmic locomotion performed in the sagittal plane, but it is unclear whether frontal plane movements show similar neural patterning in adult humans. The purpose of this study was to compare cutaneous reflex modulation patterns evoked during sagittal and frontal plane rhythmic movements. Eight healthy, neurologically intact adults (three males, five females) walked and sidestepped on a treadmill at approximately 1Hz. The sural nerve of the dominant (and lead) limb was stimulated randomly every 3-7 steps at eight phases of each gait cycle. Ipsilateral electromyographic recordings from four lower leg muscles and kinematic data from the ankle were collected continuously throughout both tasks. Data from unstimulated gait cycles were used as control trials to calculate middle-latency reflex responses (80-120ms) and kinematic changes (140-220ms) following electrical stimulation. Results show that the cutaneous reflex modulation patterns were similar across both tasks despite significant differences in background EMG activity. However, increased reflex amplitudes were observed during the late swing and early stance phases of sidestepping, which directly altered ankle kinematics. These results suggest that the neural control mechanisms responsible for coordinating sagittal locomotion are flexibly modified to coordinate frontal plane activities even with very different foot landing mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.