Abstract

In this study the roles of polar perpendicular diffusion and drifts are illustrated in a model containing a heliosheath and diffusive shock acceleration as applied to the solar wind termination shock. Of particular interest is the relation of polar perpendicular diffusion to particle drifts and how the effectiveness of the termination shock acceleration of galactic and anomalous protons is influenced by this relation. We found that drifts have a more prominent effect than the polar enhancement of perpendicular diffusion so that its omission from termination shock models would produce unrealistically large shock acceleration and consequently also larger modulation effects throughout the heliosphere. The computed spectra at a heliolatitude of 35° are almost similar for the two polarity epochs indicating that the two Voyager spacecraft might not observe differences between the two cycles in future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.