Abstract
The purpose of this study was to investigate the effects of peripheral afferent stimuli on the synchrony between brain and muscle activity as estimated by corticomuscular coherence (CMC). Electroencephalogram (EEG) from sensorimotor cortex and electromyogram (EMG) from two intrinsic hand muscles were recorded during a key grip motor task, and the modulation of CMC caused by afferent electrical and mechanical stimulation was measured. The particular stimuli used were graded single-pulse electrical stimuli, above threshold for perception and activating cutaneous afferents, applied to the dominant or non-dominant index finger, and a pulsed mechanical displacement of the gripped object causing the subject to feel as if the object may be dropped. Following electrical stimulation of the dominant index finger, the level of β-range (14-36 Hz) CMC was reduced in a stimulus intensity-dependent fashion for up to 400 ms post-stimulus, then returned with greater magnitude before falling to baseline levels over 2.5 s, outlasting the reflex and evoked changes in EMG and EEG. Subjects showing no baseline β-range CMC nevertheless showed post-stimulus increases in β-range CMC with the same time course as those with baseline β-range CMC. The mechanical stimuli produced similar modulation of β-range CMC. Electrical stimuli to the non-dominant index finger produced no significant increase in β-range CMC. The results suggest that both cutaneous and proprioceptive afferents have access to circuits generating CMC, but that only a functionally relevant stimulus produces significant modulation of the background β-range CMC, providing further evidence that β-range CMC has an important role in sensorimotor integration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.