Abstract

Vagus nerve stimulation (VNS) is a palliative treatment for intractable epilepsy. Therapeutic mechanisms of VNS have not been elucidated. In this study, we measured the local field potential (LFP) with high-spatial resolution using a microelectrode array in adult rats, and analyzed VNS-evoked phase modulation at a local network level. Eight adult Wistar rats (270 - 330 g) were used. Each rat underwent implantation of VNS system (Cyberonics, Houston, TX., USA) under 1.5% isoflurane anesthesia. One week after implantation, right temporal craniotomy was performed under the same as previous anesthesia. Subsequently, a microelectrode array was placed in the temporal lobe cortex, and LFP was recorded with sampling rate of 1000 Hz. Phase-locking value (PLV) between all pairs of electrodes in varied frequency bands was calculated in order to evaluate the effect of VNS in terms of synchrony of neuronal activities. PLV was calculated both in a normal state and in an epileptic state induced by kainic acid. VNS increased PLV in a normal state, particularly in high-γ band. In an epileptic state, VNS increased PLV in high-γ band, and decreased in d and low-β bands. VNS modulates synchrony in a band-specific and state-dependent manner. VNS might keep cortical synchrony within the optimal state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.