Abstract

Nitric oxide (NO) is a highly reactive, membrane-permeable free radical, which has recently emerged as an important signalling molecule and antioxidant. Here we investigated the protective effect of NO against the toxicity caused by excess CuSO(4) (50 microM) in the adventitious roots of mountain ginseng. It was found that NO donor, sodium nitroprusside (SNP), was effective in reducing Cu-induced toxicity in the mountain ginseng adventitious roots. Protective effect of SNP, as indicated by extent of lipid peroxidation, was reversed by incorporation of 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (CPTIO), a NO scavenger, in the medium suggesting that the protective effect of SNP is attributable to NO released, which was revealed from in situ confocal laser scanning microscopic localization of NO in the adventitious roots of mountain ginseng. Results obtained in the present study suggest that reduction of excess Cu-induced toxicity by SNP is most likely mediated through the modulation in the activities of antioxidant enzymes involved in H(2)O(2) detoxification (catalase, peroxidase, ascorbate peroxidase) and in the maintenance of cellular redox couples (glutathione reductase), and contents of molecular antioxidants (particularly non-protein thiol, ascorbate and its redox status). Exogenous NO supply also improved the activity of superoxide dismutase, an enzyme responsible for O*(2) (-) dismutation, and NADPH oxidase, an enzyme responsible for O*(2) (-) generation, in excess Cu supplied adventitious roots of mountain ginseng.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call