Abstract

Kupffer cells are professional phagocytes of the liver clearing bacteria from portal blood. Their clearance capacity, however, can be overwhelmed, transforming them into critical mediators of hepatic-injury. We investigated the consequences of selective Kupffer cell-overload by intraperitoneally administering pyrogen-free gadolinium chloride (GdCl3) or Zymosan into rats and into endotoxin-resistant mice (C3H/HeJ). The number of myeloperoxidase-positive (MPO+) cells increased at 3 h mainly around the portal vessel after both GdCl3 and Zymosan treatment. Simultaneously, GdCl3 administration reduced detectability of ED-1+ (but not ED-2) cells near the portal vessel. Serum chemokine (C-X-C motif) ligand 1 (CXCL-1), CXCL-2 and chemokine (C-C motif) ligand 2 (CCL-2) showed a peak at 3 h after both treatment regimens although at a higher extent after Zymosan administration. Accordingly, CXCL-1, CXCL-5 and CCL-2 gene expression in the liver was up-regulated after GdCl3 treatment at 3 h. After Zymosan administration a significant up-regulation of CXCL-1, CXCL-2, CXCL-10, CCL-2, CCL-3 and CCL-20 gene expression in liver at 3 h was observed. After Zymosan administration intracellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) gene expression was up-regulated in rat liver tissue. In C3H/HeJ mice both treatment regimens up-regulated CCL-2 and ICAM-1 gene expression after 3 h and down-regulated platelet endothelial cell adhesion molecule 1 (PECAM-1) gene expression. In conclusion, phagocytosis overload of Kupffer cells causes induction of several CXC, CC-chemokines, upregulation of “positive” adhesion molecule gene expression, down-regulation of the “negative” adhesion molecule PECAM-1 and a recruitment of neutrophil granulocytes in the portal area of the liver of treated rats and mice mainly in close contact to the liver macrophages.

Highlights

  • The liver is an important “power plant” of the body and one of the main clearance organs

  • We investigated the consequences of selective Kupffer cell-overload by intraperitoneally administering pyrogen-free gadolinium chloride (GdCl3) or Zymosan into rats and into endotoxin-resistant mice (C3H/HeJ)

  • After Zymosan administration intracellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) gene expression was up-regulated in rat liver tissue

Read more

Summary

Introduction

The liver is an important “power plant” of the body and one of the main clearance organs This function is performed mainly by the hepatocyte through the uptake and clearance of xenobiotics and catabolites of heme and by the liver macrophages (Kupffer cells). Liver inflammation and damage in many animal models and in humans may not be initiated by death (apoptosis or necrosis) of liver parenchymal cells but by liver resident and recruited inflammatory cells [4]. To this purpose resident liver macrophages may communicate with hepatocytes and, possibly, with inflammatory cells

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call