Abstract

Changes in oral temperature can influence taste perception, indicating overlap among mechanisms for taste and oral somesthesis. Medullary gustatory neurons can show cosensitivity to temperature, albeit how these cells process combined taste and thermal input is poorly understood. Here, we electrophysiologically recorded orosensory responses (spikes) from 39 taste-sensitive neurons in the nucleus tractus solitarii of anesthetized mice during oral delivery of tastants adjusted to innocuous cool (16 and 18°C), room (22°C, baseline), and warm (30 and 37°C) oral temperatures. Stimuli included (in mM) 100 sucrose, 30 NaCl, 3 HCl, 3 quinine, an umami mixture, and water. Although cooled water excited few cells, water warmed to 30 and 37°C significantly excited 33% and 64% of neurons, respectively. Warmth induced responses of comparable magnitude to room temperature tastants. Furthermore, warming taste solutions influenced the distribution of gustatory responses among neurons and increased (P < 0.05) neuronal breadth of tuning across taste qualities. The influence of warmth on response magnitude was stimulus specific. Across neurons, warming facilitated responses to sucrose and umami in a superadditive manner, as these responses exceeded (P < 0.05) the arithmetic sum of activity to warming alone and the taste stimulus tested at room temperature. Superadditive increases (P < 0.05) in responding were also noted in some cells for warmed HCl. Yet warming induced only simple additive or subtractive effects on responses to quinine and NaCl. Data show temperature is a parameter of gustatory processing, like taste quality and concentration, in medullary circuits for taste.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call