Abstract
Cell-based sensing platforms provide functional information on cellular effects of bioactive or toxic compounds in a sample. Current challenges concern the rather extended length of the assays as well as their limited reproducibility and sensitivity. We present a biosensing method capable of appraising, on a short time scale and with exquisite sensitivity, the occurrence and the magnitude of cellular alterations induced by low levels of a bioactive/toxic compound. Our method is based on integrating optogenetic control of non-electrogenic human cells, modified to express light sensitive protein channels, into a non-invasive electro-optical analytical platform enabling quantitative assessment of the stimulus dependent, dynamical cellular response. Our system exploits the interplay between optogenetic stimulation and time lapse fast impedance assays in boosting the platform sensitivity when exposing cells to a model exogenous stimulus, under both static and flow conditions. The proposed optogenetically modulated cell-based sensing platform is suitable for in field applications and provides a new paradigm for impedance-based sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.