Abstract

Insulin-regulated glucose metabolism in cells is critical for proper metabolic functioning, and insulin resistance leads to type 2 diabetes. We performed a human study to assess the availability of structurally related dietary flavonols and tested their ability to affect cellular glucose uptake, metabolism, and glucose transporter gene expression in a liver HepG2 cell model. Eight healthy volunteers consumed a meal containing galangin, kaempferol, quercetin, and myricetin. In plasma, myricetin was absent, but the others were present, mostly as conjugates. In HepG2 cells, a combination of galangin, kaempferol, and quercetin (5 μM each) for 12 h increased the acute uptake of [U-(14)C]-glucose and 2-[U-(14)C]-deoxyglucose by almost 100 and ∼10%, respectively. All of the combinations increased glucose metabolism, but the effect on transport was less pronounced and mixed. A mixture of all flavonols significantly increased mRNA expression of the main glucose transporter Glut1 in HepG2 cells. These results for the first time show the presence of galangin conjugates in human plasma, and allow direct comparison between absorption of flavonols. A combination of flavonols has the potential to modulate sugar metabolism, both uptake into cells as evident from effects on deoxyglucose, and also further cellular glucose metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call