Abstract

AbstractIn addition to the topographical features and chemical properties of substrates, the mechanical properties are known as a vital regulator of cellular processes such as adhesion, proliferation, and migration, and have received considerable attention in recent years. In this work, electrochemical redox multilayers made of ferrocene-modified poly(ethylenimine) (PEI-Fc) and deoxyribonucleic acid (DNA) with controlled stiffness were used to investigate the effects of the mechanical properties of multilayers on fibroblast cell (NIH/3T3) behaviors. Redox PEI-Fc plays an essential role in inducing swelling in multilayers under an electrochemical stimulus, resulting in distinct changes in the stiffness of the multilayers. The Young’s modulus varied from 2.05 to 1.07 MPa for the (PEI-Fc/DNA) multilayers by changing the oxidation time of the electrochemical treatment. We demonstrated that the adhesion, proliferation, and migration of fibroblast cells depended on the multilayers’ stiffness. These results indicate that cell behaviors can be precisely controlled by electrochemical treatment, which provides a new way to prepare thin films with tunable mechanical properties with potential biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.