Abstract

Legionella pneumophila has become a model system to decipher the non-apoptotic functions of caspases and their role in immunity. In permissive cells, the L. pneumophila-containing vacuole evades endosomal traffic and is remodelled by the endoplasmic reticulum. Evasion of the endosomes is mediated by the Dot/Icm type IV secretion system. Upon L. pneumophila infection of genetically restrictive cells such as wild-type (WT) C57Bl/6J murine macrophages, flagellin is sensed by the NOD-like receptor Nlrc4 leading to caspase-1 activation by the inflammasome complex. Then, caspase-7 is activated downstream of the Nlrc4 inflammasome, promoting non-apoptotic functions such as L. pneumophila-containing phagosome maturation and bacterial degradation. Interestingly, caspase-3 is activated in permissive cells during early stages of infection. However, caspase-3 activation does not lead to apoptosis until late stages of infection because it is associated with potent Dot/Icm-mediated anti-apoptotic stimuli that render the infected cells resistant to external apoptotic inducers. Therefore, the role of caspase-1 and non-apoptotic functions of executioner caspases are temporally and spatially modulated during infection by L. pneumophila, which determine permissiveness to intracellular bacterial proliferation. This review will examine the novel activation pathways of caspases by L. pneumophila and discuss their role in genetic restriction and permissiveness to infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.