Abstract

Cardiac stem cells (CSCs) play a vital role in cardiac remodeling. Uncontrolled hypertension leads to cardiac hypertrophy, followed by cardiac failure. Pathological remodeling is associated with enhanced oxidative stress. Decreased cardiac stem cell efficiency is speculated in heart diseases. Maintaining a healthy stem cell population is essential for preventing progressive cardiac remodeling. Some anti-hypertensive drugs are cardioprotective. However, the effect of these drugs on CSCs has not been investigated. Metoprolol is a cardioprotective anti-hypertensive agent. To examine whether metoprolol can prevent the deterioration of CSC efficiency, spontaneously hypertensive rats (SHRs) were treated with this drug, and the effects on stem cell function were evaluated. Six-month-old male SHRs were treated with metoprolol (50 mg × kg-1per day) for 2 months. The effectiveness of the treatment at reducing blood pressure and reducing hypertrophy was ensured, and the animals were killed. Cardiac stem cells were isolated from the atrial tissue, and the effect of metoprolol on stem cell migration, proliferation, differentiation, and survival was evaluated by comparing the treated SHRs with untreated SHRs and normotensive Wistar rats. Compared to the Wistar rats, the SHR rats presented with a decrease in stem cell migration and proliferation and an increase in intracellular oxidative stress and senescence. Treating SHRs with metoprolol increased CSC migration and proliferation potential and stemness retention. Cellular senescence and oxidative stress were reduced. The attributes of stem cells from the metoprolol-treated SHRs were comparable to those of the Wistar rats. The restoration of stem cell efficiency is expected to prevent hypertension-induced progressive cardiac remodeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call