Abstract

The aim of the present study was to determine the effects of dietary restriction (DR) on the age-related changes in membrane fluidity, fatty acid composition and free radical damage of mitochondrial membranes obtained from the rat left ventricle. Mitochondrial membrane preparations were obtained from the left ventricles of 6- and 24-month-old, male, Fischer 344 rats that were allowed to eat throughout their life either ad lib (Group A) or only 60% of the amount consumed by the ad lib fed group (Group B). Our results show that the membrane fluidity of the 24 month Group A hearts was less than that of the 6 month group A hearts. No differences in membrane fluidity were observed between the 6 and 24 month DR groups. The fatty acid composition of the mitochondrial membranes of the two ad lib fed groups differed: the long-chain polyunsaturated 22:4 fatty acid was higher in the older group, although linoleic acid (18:2) was lower. DR eliminated the differences. No statistically significant difference in the overall polyunsaturated fatty acid content was noted. However, the peroxidizability index was higher in the membranes of the 24 month Group A hearts but not in the 24 month Group B hearts. Finally, the degree of lipid damage, as assessed in vitro by the induced production of reactive oxygen species, was elevated in the 24 month Group A hearts. No difference was observed between the young and old DR groups. Considered together, these results suggest that DR maintains the integrity of the cardiac mitochondrial membrane fluidity by minimizing membrane damage through modulation of membrane fatty acid profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call