Abstract

Our work assesses the effects of mu opioid receptor activation on high-threshold Ca2+/Ba2+ currents in freshly dispersed pyramidal neurons of the medial prefrontal cortex in rats. Application of the specific mu receptor agonist (D-Ala2+, N-Me-Phe4+, Gly5+-ol)-enkephalin (DAMGO) at 1 microM decreased Ca2+ current amplitudes from 0.72 to 0.49 nA. The effect was abolished by naloxone and omega-Conotoxin GVIA. Inhibition was not abolished by strong depolarisation of the cell membrane. In addition, a macroscopic Ba2+ current recorded in cell-attached configuration was inhibited when DAMGO was applied outside the patch pipette. An adenylyl cyclase inhibitor (SQ 22536) and a protein kinase A inhibitor (H-89) decreased Ca2+ current amplitude. Moreover, the inhibitory effect of mu opioid receptors on Ca2+ currents required the activation of protein kinase A. We conclude that activation of mu opioid receptors in medial prefrontal cortex pyramidal neurons inhibits N type Ca2+ channel currents, and that protein kinase A is involved in this transduction pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.