Abstract
Rat alveolar type II cells were cultured on collagen-coated filters (CCF) and human amnionic basement membrane (ABM) to determine the effect of culture substratum on the development of monolayer bioelectric properties. Monolayers cultured on both substrata rapidly developed bioelectric properties with similar time courses, monolayer capacitance values (approximately 1 muF/cm2), current-voltage relationships, and responses to stimulants and inhibitors of active ion transport. Increasing seeding densities tended to increase monolayer bioelectric properties regardless of culture substratum. Monolayers cultured on ABM had higher resistance values (491 vs. 291 omega.cm2) and lower short-circuit currents (2.85 vs. 4.51 muA/cm2) than monolayers with similar cell densities cultured on CCF. These differences in monolayer bioelectric properties were not due to differences in substratum resistance or capacitance effects. The relationships between monolayer bioelectric properties were also affected by the culture substratum. In additional experiments, cells cultured on contracted gels formed monolayers with high short-circuit currents (9.25 muA/cm2). Cell morphology varied depending on the culture substratum, with cells cultured on contracted gels appearing the most cuboidal, whereas the flattest and most attenuated cells were those cultured on ABM. On the basis of these observations, we conclude that culture substratum significantly affects the development of bioelectric properties across alveolar type II cell monolayers. In vivo the bioelectric properties across the alveolar epithelium may also vary with changes in cellular substratum or cell density (e.g., after acute lung injury) and possibly with cell morphology (e.g., alveolar type I vs. alveolar type II cells).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.