Abstract
1. Whole-cell patch-clamp and fast perfusion were used to study the effects of zinc on adenosine 5'-triphosphate (ATP)-induced responses of histaminergic neurons. 2. At 10-30 micro M ATP, Zn(2+) had biphasic effects on ATP responses. Zn(2+) at 3-100 micro M increased the ATP-induced currents, but inhibited them at higher concentrations. 3. At 300 micro M ATP, Zn(2+) predominantly but incompletely inhibited the currents. 4. At 5 and 50 micro M, Zn(2+) shifted to the left the concentration-response curve for ATP-induced currents, without changing the maximal response. At 1 mM, Zn(2+) inhibited ATP-induced currents in a noncompetitive way, reducing the maximal response by 58%. .Zn(2+) increased the decay time of ATP-evoked currents nine fold with an EC(50) of 63 micro M. Upon removal of high concentrations of Zn(2+), there was a rapid increase of the current followed by a slow decline towards the response amplitude seen with ATP alone. The appearance of a tail current is consistent with a Zn(2+)-induced increase of ATP affinity and an inhibition of its efficacy. 6. Thus, Zn(2+) acts as a bidirectional modulator of ATP receptor channels in tuberomamillary neurons, which possess functional P2X(2) receptors. The data are consistent with the existence of two distinct modulatory sites on the P2X receptor, which can be occupied by Zn(2+). 7. Our data suggest that zinc-induced potentiation of ATP-mediated currents is caused by the slowing of ATP dissociation from the receptor, while inhibition of ATP-induced currents is related to the suppression of ATP receptor gating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.