Abstract

Abstract In this study the modulation of ocean-to-atmosphere feedback over the North Pacific in early winter from global warming is investigated based on both the observations and multiple climate model simulations from a statistical perspective. It is demonstrated that the basin-scale atmospheric circulation displays an equivalent barotropic ridge in response to warm SST anomalies in the Kuroshio–Oyashio Extension (KOE) region. This warm SST–ridge response in early winter can be enhanced significantly by global warming, indicating a strengthening of air–sea coupling over the North Pacific. This enhancement is likely associated with the intensification of storm tracks and, in turn, the amplification of atmospheric transient eddy feedback in a warm climate, although the secular trend of enhanced storm-track activity over the North Pacific is suggested to be biased in reanalysis product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.