Abstract

TAR DNA-binding protein 43 (TDP-43) is an RNA-regulating protein that carries out many cellular functions through liquid-liquid phase separation (LLPS). The LLPS of TDP-43 is mediated by its C-terminal low-complexity domain (TDP43-LCD) corresponding to the region 267–414. In neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia, pathological inclusions of the TDP-43 are found that are rich in the C-terminal fragments of ∼25 and ∼35 kDa, of which TDP43-LCD is a part. Thus, understanding the assembly process of TDP43-LCD is essential, given its involvement in the formation of both functional liquid-like assemblies and solid- or gel-like pathological aggregates. Here, we show that the solution pH and salt modulate TDP43-LCD LLPS. A gradual reduction in the pH below its isoelectric point of 9.8 results in a monotonic decrease of TDP43-LCD LLPS due to charge-charge repulsion between monomers, while at pH 6 and below no LLPS was observed. The addition of heparin to TDP43-LCD solution at pH 6, at a 1:2 heparin-to-TDP43-LCD molar ratio, promotes TDP43-LCD LLPS, while at higher concentration, it disrupts LLPS through a reentrant phase transition. Upon incubation at pH 6, TDP43-LCD undergoes gelation without phase separation. However, in the reentrant regime in the presence of a high heparin concentration, it forms thick amyloid aggregates that are significantly more SDS resistant than the gel. The results indicate that the material nature of the TDP43-LCD assembly products can be modulated by heparin which is significant in the context of liquid-to-solid phase transition observed in TDP-43 proteinopathies. Our findings are also crucial in relation to similar transitions that could occur due to alteration in the molecular level interactions among various multivalent biomolecules involving other LCDs and RNAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.