Abstract

Topoisomerase I and topoisomerase II allow a metabolically active cell to mobilize its supercoiled chromosomal DNA and undergo replication, transcription, recombination, and repair. Several topoisomerase inhibitors have recently been shown to be active in preclinical systems. Topotecan (SK&F 104,864), a water-soluble camptothecin analog, is an inhibitor of topoisomerase I. Novobiocin is an inhibitor of topoisomerase II. Lonidamine depletes cellular adenosine 5'-triphosphate (ATP) and may impede energy-dependent DNA repair, MCF-7 human breast-cancer cells were treated in vitro with topotecan, novobiocin, and lonidamine alone, in paired combinations, and in combination with CDDP and melphalan. The three enzyme inhibitors alone and in combination did not increase tumor cell sensitivity to CDDP. However, the combinations of topotecan/novobiocin and lonidamine/novobiocin did enhance the cytotoxicity of melphalan. Mice bearing the FSaII fibrosarcoma were treated in vivo with topotecan, novobiocin, and lonidamine alone, in paired combinations, and in combination with CDDP, melphalan, BCNU, and cyclophosphamide. The combination of topotecan/novobiocin had the greatest impact on tumor cell sensitivity to each cytotoxic agent tested in both tumor cell-survival and tumor growth-delay assays. This sensitization was greatest at the highest concentrations of the cytotoxic agent tested. Combinations of topoisomerase I and topoisomerase II inhibitors may be useful as modulators of antitumor alkylating agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call