Abstract

Thermogenic activation via trans-and de novo browning of white adipocytes is a promising strategy to accelerate lipid metabolism for regulating obesity-related disorders. In this study, we investigated the intricate interplay between angiogenic regulation and browning in white adipocytes using the bioactive compound, resveratrol (Rsv). Rsv has previously been documented for its regulatory influence on the trans and de novo browning of white adipocytes. Our findings revealed that concurrent activation of angiogenesis is prerequisite for inducing browning within the microenvironment of white adipocytes when exposed to browning activators. Additionally, we observed a significant browning effect on white adipocytes when the local adipose tissue environment was prompted to undergo angiogenesis, notably facilitated by a proangiogenic molecule known as Vascular endothelial growth factor (VEGF). Intriguingly, this effect was reversed when angiogenesis was inhibited by treatment with the antiangiogenic agent thalidomide. Furthermore, the study revealed the role of VEGF in paracrine activation of white adipocytes resulting in the induction of browning in both 3T3-L1 cell lines and primary mouse white adipocytes. The cross-talk between angiogenesis and browning was found to be initiated via the transcriptional activation of Estrogen receptor α (ERα) triggering the VEGF/VEGFR2 signaling pathway leading to browning and a reconfiguration of lipid metabolism within adipocytes. In conclusion, this study sheds light on the intricate cross-talk between angiogenesis and browning of white adipocytes. Notably, the findings underscore the reciprocal relationship between these processes, wherein inhibition of one process exerts discernible effects on the other.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call