Abstract
In membranes prepared from CHO-m2 cells, inhibition of [3H]-N-methylscopolamine ([3H]NMS) binding by several muscarinic agonists resulted in competition curves with Hill slopes significantly different from unity. Addition of 5'-guanylylimidodiphosphate (Gpp(NH)p) led to an increase in the IC50 value of the agonists with significant steepening of the inhibition curves. The shift in potency induced by Gpp(NH)p differed among the agonists with a rank order of oxotremorine-M = carbachol > oxotremorine > McN-A-343 = pilocarpine. In CHO-m4 membranes, Gpp(NH)p was less efficacious than in CHO-m2 membranes whereas no effect of the guanine nucleotide was found in membranes prepared from CHO-m1, -m3, and -m5 cells. No major differences in the effect of Gpp(NH)p among agonists were found in CHO-m4 cells. Atropine binding was not affected by the guanine nucleotide. Together, these results indicate that coupling of G-proteins to muscarinic receptors linked to inhibition of cyclic adenosine monophosphate (cAMP) (m2 and m4) but not of those linked to phosphoinositol turnover (m1, m3 and m5) can be perturbed by Gpp(NH)p. The differential effects observed with Gpp(NH)p between agonist binding to m2 and m4 receptors appear to be receptor-specific and may reflect differences in the G proteins activated by these receptors in CHO cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.