Abstract

Our previous work with adrenocortical cells from several Sceloporus lizard species suggests that gonadal hormones influence the steroidogenic capacity and the sensitivity to ACTH. However, there are discrepancies in these cellular response parameters suggesting that the effects of gonadal hormones on adrenocortical function vary with species, sex, age, season, and environmental/experimental conditions. To gain further insight into these complex interactions, here we report studies on Coleonyx elegans, Eublepharidae (Yucatán Banded Gecko), which is only distantly related to Sceloporus lizards via a basal common ancestor and in captivity, reproduces throughout the year. We hypothesized that a more constant reproductive pattern would result in less variable effects of gonadal hormones on adrenocortical function. Reproductively mature male geckos were orchiectomized with and without replacement of testosterone (300 μg) via an implanted Silastic® tube. Reproductively mature intact female geckos received implants with and without testosterone. After 11 weeks, adrenocortical cells were isolated from these lizards and incubated with corticotropin (ACTH) for 3 h at 28 °C. Three adrenocortical steroids, progesterone, corticosterone and aldosterone, were measured by highly specific radioimmunoassays. The production rate of each steroid was statistically analyzed using established software and net maximal rate (by subtracting the basal rate) in response to ACTH was determined. In general, corticosterone predominated and comprised ∼83% of the total net maximal rate, followed by progesterone (∼14%) and aldosterone (∼3%). Compared to the functional responses of adrenocortical cells derived from other lizards thus far, adrenocortical cells from C. elegans exhibited a depressed steroid response to ACTH and this depressed response was more pronounced in male cells. In addition, other sex differences in cellular response were apparent. In female cells, the net maximal rates of progesterone, corticosterone and aldosterone were, respectively, 161, 122 and 900% greater than those in intact-male cells. In contrast, cellular sensitivity to ACTH, as determined by the half-maximally effective steroidogenic concentration (EC50) of ACTH, did not differ between intact-male and intact-female adrenocortical cells. Treatment effects were most striking for corticosterone, the putative, major glucocorticoid in lizards. Orchiectomy caused an increase in the net maximal corticosterone rate equivalent to that of intact-female cells. Testosterone maintenance in orchiectomized lizards completely suppressed the stimulatory effect of orchiectomy. However, orchiectomy with or without testosterone maintenance did not alter cellular sensitivity to ACTH. The effect of testosterone supplementation in intact females, although suppressive, was notably different from its effect in orchiectomized males. Its effect on the net maximal corticosterone rate was relatively modest and did not completely “masculinize” the greater rate seen in intact-female cells. However, testosterone supplementation dramatically suppressed the basal corticosterone rate (by 82%) and enhanced the overall cellular sensitivity to ACTH by 150%, two effects not seen in cells derived from testosterone-treated orchiectomized lizards. Collectively, these findings clearly indicating that the gonad directly or indirectly regulates lizard adrenocortical cell function. Whereas other gonadal or extra-gonadal factors may play a role, testosterone appears to be an essential determinant of the observed sex differences in adrenocortical function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call