Abstract

The aim of the present study was to investigate whether pituitary adenylate cyclase-activating polypeptide-(1-27) (PACAP27) can modulate the adrenal catecholamine (CA) secretion induced by splanchnic nerve stimulation (SNS) and by exogenous acetylcholine (ACh) in anesthetized dogs. Plasma CA concentrations in adrenal venous and aortic blood were quantified by a high-performance liquid chromatography coupled with electrochemical detection. Adrenal venous blood flow was measured by gravimetry. Local infusion of PACAP27 (0.5, 5, and 50 ng) to the left adrenal gland via the adrenolumbar artery resulted in an increase in CA output, reaching a significant level at the highest dose tested. Either direct SNS (2 Hz) or local infusion of ACh (0.5 microgram) to the left adrenal gland produced significant increases in CA output to an extent similar to that obtained with 50 ng of PACAP27 alone. In the presence of PACAP27 (50 ng), CA responses to either SNS or exogenous ACh were significantly potentiated by approximately four- and sixfold, respectively, compared with those obtained in response to each stimulus alone. However, the enhanced CA responses to ACh were not significantly different from those to SNS. The results indicate that the increase in adrenal CA secretion, induced by either direct SNS or exogenous ACh, is synergistically enhanced by PACAP27. The study suggests that the enhanced CA secretion may result from the activation of a PACAP-mediated facilitatory mechanism(s) localized presumably at the postsynaptic level in the canine adrenal medulla in vivo, although the possible involvement of presynaptic mechanisms cannot completely be ruled out in the present study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.