Abstract

Modern strategies in adipose tissue engineering (ATE) take advantage of the easy harvest, abundance and differentiation potential towards mesenchymal lineages of hADSCs. The controlled conversion of hADSCs to committed adipogenic precursors and further mature adipocytes formation is important for good long-term results in soft tissue regeneration. Thus, in this study, we report: (i) the isolation of the processed lipoaspirate (PLA) cells from adipose tissue and sanguine fractions; (ii) the phenotypic characterization of the PLA descendants; (iii) the design of a novel protocol for the modulation of adipogenic conditions in the perspectives of ATE applications. To modulate the differentiation rate through our protocol, we propose to selectively modify the formulation of the adipogenic media in accordance with the evolution of the process. Therefore, we aimed to ensure the long-term proliferation of the precursor cells and to delay the late adipogenic events. The status of differentiation was characterized in terms of intracellular lipid accumulation and reorganization of the cytoskeleton simultaneously with perilipin protein expression. Moreover, we studied the sequential activation of PPARγ2, FAS, aP2 and perilipin genes which influence the kinetics of the adipogenic process. The strategies developed in this work are the prerequisites for prospective 3D regenerative systems.

Highlights

  • Over the last decade, there has been a paradigm shift in the understanding of the nature of adipose tissue

  • Of the cells expressed intracellular lipid accumulation. In contrast to these results, our study demonstrated that human adipose-derived stem cells (hADSCs), exposed to more complex adipogenic media (MD1 and MD2), started the TAG-accumulation at 10 days post induction, probably as a consequence of their more undifferentiated state compared to 3T3-L1 preadipocytes

  • The requirements in the modern regenerative medicine applications impose a rigorous control of the cell commitment towards mature cell types and the modulation of adipogenic conditions for adipose tissue engineering (ATE) was the premise of our studies

Read more

Summary

Introduction

There has been a paradigm shift in the understanding of the nature of adipose tissue. The white adipose tissue (WAT), derived from the mesenchyme, has been considered to be a passive organ for the storage of energy to be mobilized during food deprivation with the release of fatty acids for oxidation in other organs. Recent studies [3] have shown that subcutaneous adipose tissue provides a clear advantage over other stem cell sources due to its accessibility, minimal morbidity and the discomfort associated with its harvest. WAT represents an attractive source of autologous adult stem cells for regenerative therapy due to its abundance, surgical accessibility, and high content of multipotent mesenchymal [4,5] and endothelial [6,7] progenitor cells. While for many years bone marrow-derived mesenchymal stem cells (BM-MSC) were the primary source of stem cells for tissue engineering applications, the stromal-vascular fraction (SVF) of adipose tissue consists of a heterogeneous cell population including endothelial precursor cells, preadipocytes, anti-inflammatory

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.