Abstract
Solar-driven photocatalytic CO2 reduction is an energy-efficient and sustainable strategy to mitigate CO2 levels in the atmosphere. However, efficient and selective conversion of CO2 into multi-carbon products, like C2H4, remains a great challenge due to slow multi-electron-proton transfer and sluggish C-C coupling. Herein, a two-dimensional thin-layered hybrid perovskite is fabricated through filling of oxygen into iodine vacancy in pristine DMASnI3 (DMA = dimethylammonium). The rational-designed DMASnI3(O) induces shrinkage of active sites distance and facilitates dimerization of C-C coupling of intermediates. Upon simulated solar irradiation, the DMASnI3(O) photocatalyst achieves a high selectivity of 74.5%, corresponding to an impressive electron selectivity of 94.6%, for CO2 to C2H4 conversion and an effective C2H4 yield of 11.2 μmol g-1 h-1. In addition, the DMASnI3(O) inherits excellent water stability and implements long-term photocatalytic CO2 reduction to C2H4 in a water medium. This work establishes a unique paradigm to convert CO2 to C2+ hydrocarbons in a perovskite-based photocatalytic system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.