Abstract

The present study investigated the effect of 5-hydroxydecanoate, a selective mitochondrial K(ATP) channel blocker, on the cytotoxicity of neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) in differentiated PC12 cells. 5-Hydroxydecanoate and glibenclamide (a cell surface and mitochondrial K(ATP) channel inhibitor) reduced the MPP(+)-induced cell death and GSH depletion and showed a maximal inhibitory effect at 5 and 10 microM, respectively. Addition of 5-hydroxydecanoate attenuated the MPP(+)-induced nuclear damage, changes in the mitochondrial membrane permeability and increase in the reactive oxygen species formation in PC12 cells. The results show that 5-hydroxydecanote may prevent the MPP(+)-induced viability loss in PC12 cells by suppressing formation of the mitochondrial permeability transition, leading to the cytochrome c release and caspase-3 activation. This effect appears to be accomplished by the inhibitory action on the formation of reactive oxygen species and the depletion of GSH. The blockade of mitochondrial K(ATP) channels seems to prevent the MPP(+)-induced neuronal cell damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call