Abstract

The Src homology 2 phosphotyrosyl phosphatase (SHP2) is a nonreceptor-type phosphatase that acts as a positive transducer of receptor Tyr kinase (RTK) signaling, particularly the Ras-REK and PI3K-Akt pathways. Recently, we have demonstrated that SHP2 is required for cell transformation induced by the constitutively active fibroblast growth factor receptor 3 (K/E-FR3) (Oncogene, 22, 6909-6918). In that study, we had detected a phosphotyrosyl protein of approximately 100 KDa (p100) in cells expressing dominant-negative SHP2 (R/E-SHP2), but its identity and relevance in SHP2-meditaed transformation was not known. Here, we report the identification of p100 as alpha-catenin, a vinculin-related protein involved in adherens junction-mediated intercellular adhesion. We show that alpha-catenin becomes Tyr phosphorylated in intercellular adhesion-dependent manner and this event is counteracted by SHP2. Substrate trapping in intact cells and immunocomplex phosphatse assays confirmed that alpha-catenin is in deed an SHP2 substrate. Tyr phosphorylation of alpha-catenin enhances its translocation to the plasma membrane and its interaction with beta-catenin, leading to enhanced actin polymerization and stabilization of adherens junction-mediated intercellular adhesion, a phenomenon commensurate with loss of the transformation phenotype. Site-directed mutagenesis studies also suggested that Tyr phosphorylation of alpha-catenin enhances its inhibitory role on cell transformation. Based on our previous work and the current report, we demonstrate that mediation of cell transformation by SHP2 is a complex process that involves modulation of the Ras-ERK and PI3K-Akt signaling pathways, intercellular adhesion, focal adhesion and actin cytoskeletal reorganization. To our knowledge, this is the first report showing regulation of alpha-catenin function by Tyr phosphorylation and its inhibitory effect on cell transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.