Abstract

The modulation mechanism of iron (Fe) and manganese (Mn) in transition‐metal elements on the interface bonding and mechanical properties of bronze (Cu3Sn)‐based/diamond composites is investigated through first‐principles calculations. Transition‐elements‐doping scenarios are investigated employing six‐layer slab models. It is revealed that the doping of Fe or Mn can make the Cu3Sn/diamond interface more stable, which effectively improves the wettability of the Cu3Sn/diamond interface based on the calculation results and analysis of interface energy, differential charge density model, and density of states. However, co‐doping with both Fe and Mn weakens the wettability of the Cu3Sn/diamond interface. Finally, wettability tests and microstructure characterizations demonstrate that the doping of Fe and Mn represents an effective approach to controlling the interface bonding performance of bronze/diamond composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.