Abstract

Starting directly from the nonlinear propagation equation including saturable nonlinearity, the first- and the second-order nonlinear dispersions, the dispersion relation, instable condition, gain spectra, and the dimensionless cut-off frequency and gain spectra of modulation instability (MI) in the negative refractive material are deduced by adopting the linear stability analysis and Drude electromagnetic model. And the variations of the dimensionless gain spectra with the normalized angular frequency and normalized incident power are calculated and discussed for different sign relations between the linear dispersion and the third-order nonlinear coefficients. The results show that in the negative refractive index region, MI can occur irrespective of the sign relation between the linear dispersion and the third-order nonlinear coefficients. And depending on different dimensionless angular frequencies and different sign relations, the variations of the dimensionless gain spectra with incident power take on several different forms. Namely, the peak gain and the cut-off frequency of MI may increase then decrease with the increase of the incident power, or decrease monotonously. Moreover, MI may even have a threshold incident power for some cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.