Abstract

In this article, we investigate the optical soiltons and other solutions to Kudryashov’s equation (KE) that describe the propagation of pulses in optical fibers with four non-linear terms. Non-linear Schrodinger equation with a non-linearity depending on an arbitrary power is the base of this equation. Different kinds of solutions like optical dark, bright, singular soliton solutions, hyperbolic, rational, trigonometric function, as well as Jacobi elliptic function (JEF) solutions are obtained. The strategy that is used to extract the dynamics of soliton is known as [Formula: see text]-model expansion method. Singular periodic wave solutions are recovered and the constraint conditions, which provide the guarantee to the soliton solutions are also reported. Moreover, modulation instability (MI) analysis of the governing equation is also discussed. By selecting the appropriate choices of the parameters, 3D, 2D, and contour graphs and gain spectrum for the MI analysis are sketched. The obtained outcomes show that the applied method is concise, direct, elementary, and can be imposed in more complex phenomena with the assistant of symbolic computations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call