Abstract

This study is the first to explore the influence of incident light intensity on the photosynthetic responses under mixotrophic growth of microalga Asteracys sp. When grown mixotrophically, there was an enhanced regulation of non-photochemical quenching (NPQ) of the excited state of chlorophyll (Chl) a within the cells in response to white cool fluorescent high light (HL; 600µmolphotonsm-2s-1). Simultaneous measurement of reactive oxygen species (ROS) production as malondialdehyde (MDA) and ascorbate peroxidase (APX), an ROS scavenger, showed improved management of stress within mixotrophic cells under HL. Despite the observed decrease in quantum yield of photosynthesis measured through the Chl a fluorescence transient, no reduction in biomass accumulation was observed under HL for mixotrophy. However, biomass loss owing to photoinhibition was observed in cells grown phototrophically under the same irradiance. The measurements of dark recovery of NPQ suggested that "state transitions" may be partly responsible for regulating overall photosynthesis in Asteracys sp. The partitioning of photochemical and non-photochemical processes to sustain HL stress was analysed. Collectively, this study proposes that mixotrophy using glucose leads to a change in the photosynthetic abilities of Asteracys sp. while enhancing the adaptability of the alga to high irradiances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.