Abstract

The modulation and reconstruction of the cardio-respiratory neural circuit of Lymnaea stagnalis L. was compared to that of Helix ponatia L. where the input variation and signal molecules were found to have primary importance in network reorganization. From the cardio-respiratory circuit only neurons connected by afferent or efferent pathways to the peripheral chemosensory organ, the osphradium, were used. It was shown that, the general principles of the network reorganization is similar in the two species. The firing pattern of the neurons altered in Lymnaea depending on the input activation or presence of signal molecules in the vicinity of the neurons. The responses of the neurons to the same sensory information, originating from osphradium varied depending on their firing patterns. On central neurones the generation of phasic pattern and/or oscillation was an indicator of network disintegration leading to insensibility to the osphradial sensory inputs. Co-application of signal molecules (5HT, DA, GABA with opioid peptides) to the neurons caused a phasic firing pattern and/or oscillation leading to disintegration of one network and activation of another one. The effect of mu-opioid peptides on GABA-induced and voltage activated ion currents were shown to be the cellular target in reconstruction of neural networks in Lymnaea. The neural network reconstruction in vertebrate brain evoked by signal molecules can be compared to that observed in the identified network of Lymnaea stagnalis making this latter a useful model in further studies, too.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call