Abstract

The diploid strain D5 of Saccharomyces cerevisiae, relative to other strains of yeast, has a large amount of cytochrome P-450 present during the logarithmic phase of growth and a low amount of cytochrome P-420. As the stationary phase of growth is approached, an increasing intensity of absorbance is observed at 420 nm. If the cells are suspended in buffer during mid-logarithmic growth, the absorbance at 450 nm disappears and absorbance at 420 nm is increased after the cells have been held in buffer for 24 h. At late logarithmic growth, the absorbance at 450 nm is still retained after the cells have been held in buffer for 24 h. Within 44 h of the time of harvest, the absorbance at 450 nm disappears completely and the absorbance at 420 nm is intense. Cytoplasmic petite variants of strain D5 have less of both cytochromes P-450 and P-420 than does the grande D5 strain; the absorbance at 450 and 420 nm are retained up to 96 h when the cells are held in buffer. Haploid spores of strain D5 exhibit absorbances at 450 and 420 nm during the logarithmic phase of growth, and these absorbances are retained after the cells are held in buffer for 24 h. An hypothesis is proposed which states that cytochrome P-450 is the membrane-bound form and cytochrome P-420 is free in the cytosol; the cytochromes interconvert and are active in either state until the associated enzymes disassociate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.