Abstract

We propose and experimentally demonstrate modulation format-independent optical performance monitoring (OPM) based on a multi-task artificial neural network (MT-ANN). Optical power measurements at a series of center wavelengths adjusted using a widely tunable optical bandpass filter (OBPF) are used as the input features for a MT-ANN to simultaneously realize high-precision optical signal-to-noise ratio (OSNR) and launch power monitoring and baud rate identification (BRI). This technique is insensitive to chromatic dispersion (CD) and polarization mode dispersion (PMD). The experimental verification in a 9-channel WDM system shows that for 10 Gbaud QPSK and 32 Gbaud PDM-16QAM signals with OSNR in the range of 1-30 dB, the OSNR mean absolute error (MAE) and root mean square error (RMSE) are 0.28 dB and 0.48 dB, respectively. For launch power in the range of 0-8 dBm, the MAE and RMSE of the launch power monitoring are 0.034 dB and 0.066 dB, respectively, and the identification accuracy for both baud rates is 100%. Furthermore, this technique utilizes a single MT-ANN instead of three ANNs to realize the simultaneous monitoring of three OPM parameters, which greatly reduces the cost and complexity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call