Abstract
Modulation doping was proven to be a quite effective strategy to realize high electrical conductivity at a relative low charge carrier concentration in bulk thermoelectric materials. In this work, we used lightly doped PbTe-0.1 %Cu with minimal ionized impurity scattering as matrix material and PbS-0.8 %Cu with adequate electron concentration as electron reservoir to construct a modulation doping scenario. Such modulation doped PbTe/PbS heterostructures were characterized with high-angle angular dark field scanning transmission electron microscopy (HAADF-STEM). We achieved significantly improved carrier mobility in modulation doped (PbTe)1-x(PbS)x than homogeneously doped PbTe materials reported in literatures; meanwhile, we also obtained obviously reduced lattice thermal conductivity owing to the strong phonon scattering by the dislocation arrays at PbTe/PbS phase boundaries. An ultrahigh room temperature (323 K) figure of merit ZTRT ∼0.63 as well as remarkable average ZTavg ∼1.17 at 323–773 K were simultaneously realized in the sample (0.1 %Cu-PbTe)0.9(0.8 %Cu-PbS)0.1, both of which are among the highest ones for all reported PbTe-based thermoelectric materials so far.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.