Abstract

In this work we propose new detector designs, which allow achieving mid-infrared photovoltaic (PV) detection at temperatures as high as 180 K. The devices, which are grown by molecular beam epitaxy, are modulation-doped (MD) double barrier quantum well infrared photodetectors (QWIPs) based on AlGaAs/AlAs/GaAs. As the photocurrent spectra and I– V characteristics (in the dark and under infrared illumination) show that the dopant location is a relevant design parameter regarding the performance of PV QWIPs, we begin our work with a comparison of the performance of a set of MD samples (where we have varied the dopant location in the AlGaAs barriers) with respect to a well-doped sample of nominally the same structure. We find that the responsivity and detectivity of the MD devices seem to be higher than those of the well-doped detector, specially when the dopant is located in the substrate-sided barrier. Then, in order to improve the dark current-limited performance, we designed a new set of substrated-sided MD detectors that exhibit an extremely low dark current, even at high temperatures, otherwise no drop in the zero bias peak responsivity. Therefore, the association of the notable PV signal detection in the 3–5 μm range of these MD detectors together with the dark current reduction of the new structures has allowed us to achieve a 140 K zero bias peak responsivity of 0.015 A/W and a 180 K zero bias peak responsivity of 0.01 A/W at 4.4 μm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call