Abstract

Modular multilevel converters (MMC) have proven to be a viable candidate for high-voltage direct current transmission systems. Here, asymmetric modular multilevel converters (A-MMC) are introduced wherein each series connected module has two half-bridge (HB) submodules, with asymmetric voltage rating. Compared to conventional symmetric MMCs, such systems offer the following benefits: (i) generation of four distinct voltage levels using one module; (ii) 33% lesser semiconductor and gate drive requirement; (iii) higher system efficiency; (iv) reduction in overall cost and size. A hybrid pulse-width modulation technique generates optimised switching pulses of the A-MMC. A novel voltage balancing algorithm is proposed to stabilise each asymmetric HB submodule at the rated voltage. Circulating current control is implemented to suppress the dominant second harmonic in the arm currents of the A-MMC. Detailed simulations in MATLAB/Simulink are performed to validate the operation and control. A quantitative and qualitative comparison with conventional MMCs is also presented in terms of the converter losses, output voltage/current total harmonic distortion, capacitor ripple voltages, circulating currents etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.