Abstract

Statins (3-hydroxy-3-methyl-glutaryl coenzyme A (HMG CoA) reductase inhibitors) have been demonstrated to reduce cardiovascular mortality. It is unclear how the expression level of HMG CoA reductase in cardiovascular tissues compares with that in cells derived from the liver. We hypothesized that this enzyme exists in different cardiovascular tissues, and simvastatin modulates the vascular iberiotoxin-sensitive Ca2+-activated K(+) (BK(Ca)) channels. Expression of HMG CoA reductase in different cardiovascular preparations was measured. Effects of simvastatin on BK(Ca) channel gatings of porcine coronary artery smooth muscle cells were evaluated. Western immunoblots revealed the biochemical existence of HMG CoA reductase in human cardiovascular tissues and porcine coronary artery. In porcine coronary artery smooth muscle cells, extracellular simvastatin (1, 3 and 10 microM) (hydrophobic), but not simvastatin Na+ (hydrophilic), inhibited the BK(Ca) channels with a minimal recovery upon washout. Isopimaric acid (10 microM)-mediated enhancement of the BK(Ca) amplitude was reversed by external simvastatin. Simvastatin Na+ (10 microM, applied internally), markedly attenuated isopimaric acid (10 microM)-induced enhancement of the BK(Ca) amplitude. Reduced glutathione (5 mM; in the pipette solution) abolished simvastatin -elicited inhibition. Mevalonolactone (500 microM) and geranylgeranyl pyrophosphate (20 microM) only prevented simvastatin (1 and 3 microM)-induced responses. simvastatin (10 microM ) caused a rottlerin (1 microM)-sensitive (cycloheximide (10 microM)-insensitive) increase of PKC-delta protein expression. Our results demonstrated the biochemical presence of HMG CoA reductase in different cardiovascular tissues, and that simvastatin inhibited the BK(Ca) channels of the arterial smooth muscle cells through multiple intracellular pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.