Abstract

Retinoids inhibit the growth and enhance the differentiation of murine S91-C2 melanoma cells. Specific alterations in gene expression are a plausible mechanism for these effects. Since nuclear retinoic acid receptors (RAR) are likely mediators of retinoid-induced changes in gene expression, we used Northern blotting to analyze the expression of RAR alpha, RAR beta, and RAR gamma in S91-C2 cells. mRNA for both RAR alpha and RAR gamma was detected in these cells, but no RAR beta mRNA could be found. Treatment with 10(-7) and 10(-6) M beta-all-trans-retinoic acid (RA) for 24 h caused a 1.5- to 2-fold increase in RAR alpha and RAR gamma mRNA, whereas lower concentrations of RA were ineffective. RAR beta mRNA, which was undetectable in untreated cells, was detected after 24 h of treatment with a RA concentration as low as 10(-9) M, and its level increased with up to 10(-6) M RA. At the latter dose, RAR beta mRNA induction occurred by 4 h and increased progressively, reaching a plateau after 24 h of treatment. RAR beta mRNA induction at 4 h was not inhibited by cycloheximide at a concentration that suppressed protein synthesis by more than 90%. Several retinoids and related synthetic compounds, including 13-cis RA, TTNPB, Ch55, Am80, and the trifluoromethyl nonyloxyphenyl analog of RA, also induced RAR beta mRNA, whereas a 24-h treatment with 10(-6) M retinol, TTNP (a decarboxylated analog of TTNPB), or the phenyl analog of RA failed to induce RAR beta mRNA. With the exception of retinol and the trifluoromethyl nonyloxyphenyl analog of RA, the ability of the retinoids to induce RAR beta mRNA and their growth inhibitory effect were correlated. However, S91-C154, a RA-resistant mutant subclone derived from S91-C2 cells, showed mRNA levels of RAR alpha and RAR gamma and induction of RAR beta by RA similar to those detected in the sensitive S91-C2 cells. Like the S91 melanoma cells, two other mouse melanoma cell lines, K-1735P and B16-F1, constitutively expressed RAR alpha and RAR gamma mRNAs. The level of RAR beta mRNA was increased by RA only in B16-F1 cells, although the growth of both was inhibited by RA. These results demonstrate that RA can, directly and rapidly, induce the expression of mRNA for a high affinity nuclear receptor in some murine melanoma cells and that this induction is not sufficient to inhibit growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call