Abstract
Covalent organic frameworks (COFs) can be designed to allow uranium extraction from seawater by incorporating photocatalytic linkers. However, often sacrificial reagents are required for separating photogenerated charges which limits their practical applications. Herein, we present a COF-based adsorption-photocatalysis strategy for selective removal of uranyl from seawater in the absence of sacrificial reagents. A series of ternary and quaternary COFs were synthesized containing the electron-rich linker 2,4,6-triformylphloroglucinol as the electron donor, the electron-deficient linker 4,4'-(thiazolo[5,4-d]thiazole-2,5-diyl)dibenzaldehyde as the acceptor, and amidoxime nanotraps for selective uranyl capture (with the quaternary COFs incorporating [2,2'-bipyridine-5,5'-diamine-Ru(Bp)2]Cl2 as a secondary photosensitizer). The ordered porous structure of the quaternary COFs ensured efficient mass transfer during the adsorption-photocatalysis capture of uranium from seawater samples, with photocatalytically generated electrons resulting in the reduction of adsorbed U(VI) to U(IV) in the form of UO2. A quaternary COF, denoted as COF 2-Ru-AO, possessed a high uranium uptake capacity of 2.45 mg/g/day in natural seawater and good anti-biofouling abilities, surpassing most adsorbents thus far. This work shows that multivariate COF adsorption-photocatalysts can be rationally engineered to work efficiently and stably without sacrificial electron donors, thus opening the pathway for the economic and efficient extraction of uranium from the earth's oceans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.