Abstract
The unusual reactivity of twisted amides has long been associated with the degree of amide distortion, though classical bridged bicyclic amides offer limited methods to further modify these parameters. Here, we report that the geometry and reactivity of a single twisted amide scaffold can be significantly modulated through remote substituent effects. Guided by calculated ground state geometries, a library of twisted amide derivatives was efficiently prepared through a divergent synthetic strategy. Kinetic and mechanistic investigations of these amides in the alkylation/halide-rebound ring-opening reaction with alkyl halides show a strong positive correlation between the electron donating ability of the substituent and distortion of the amide bond, leading to rates of nucleophilic substitution spanning nearly 2 orders of magnitude. The rate limiting step of the cascade sequence is found to be dependent on the nature of the substituent, and additional studies highlight the role of solvent polarity and halide ion on reaction pathway and efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.