Abstract

Interaction between carcinoma-associated fibroblasts (CAFs) and tumor cells leads to the invasion and metastasis of breast cancer. Herein, we prepared a redox-responsive chondroitin sulfate (CS)-based nanomedicine, in which hydrophobic cabazitaxel (CTX) was conjugated to the backbone of CS via glutathione (GSH)-sensitive dithiomaleimide (DTM) to form an amphipathic CS-DTM-CTX (CDC) conjugate, and dasatinib (DAS) co-assembled with the CDC conjugate to obtain DAS@CDC. After CD44 receptor-mediated internalization by CAFs, the nanomedicine could reverse CAFs to normal fibroblasts, blocking their crosstalk with tumor cells and reducing synthesis of major tumor extracellular matrix proteins, including collagen and fibronectin. Meanwhile, the nanomedicine internalized by tumor cells could effectively inhibit tumor proliferation and metastasis, leading to shrinkage of the tumor volume and inhibition of lung metastasis in a subcutaneous 4 T1 tumor model with low side effects. Collectively, the nanomedicine showed a remarkably synergistic therapy effect against breast cancer by modulating tumor-stromal crosstalk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.