Abstract

By using computational methodologies based on time dependent density functional theory (TDDFT) we study the opto-electronic properties of three types of triphenylamine (TPA)-based dyes, namely TPA-TBT-1, TPA-DBT-1, and TPA-BT-1, and these are proposed as potential candidates for photovoltaic applications. Energy band modulation has been performed by functionalizing these dyes with different electron donating and electron withdrawing groups. Photoelectron spectra and photovoltaic properties of the dyes have been investigated by a combination of DFT and TDDFT approaches. Based on the optimized molecular geometry, relative position of the frontier energy levels, and the absorption maximum of the dyes we propose some dyes offering good photovoltaic performance. At the same time, these results provide a direction for optimizing the composition of dye-metal surface nanodevices for fabricating dye-sensitized solar cells (DSSCs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.