Abstract

HypothesisCellulose nanocrystals (CNC) can produce photonic composite films that selectively reflect light based on their periodic cholesteric structure. The hypothesis of this research is that by incorporating water-soluble polymer, photonic properties of CNC composite film can be designed by manipulating the polymer molecular weight. ExperimentalFlexible free-standing composite films of five different poly (ethylene glycol) (PEG) molecular weights were prepared via air drying under a controlled environment, and characterised by reflectance UV–vis spectrometer, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Films with each molecular weight were investigated over a concentration range. FindingsThe colour and transmission haze of the composite films was modified by varying both the PEG molecular weight and concentration. Depending on the molecular weight, the films were able to reflect light from the UV region (242 nm) across the visible spectrum to the near-infrared region (832 nm). Different trends in variation of the reflected light based on the molecular weight was found with increasing PEG concentration and was explained by weak depletion interactions occurring between CNC and PEG, which was reduced with increasing PEG molecular weight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.